


Abstract

Background: There has been a lot of research on how to teach and learn di↵erent
programming idioms, but not much on the e↵ects of shortcuts in program compre-
hension.
Objective: We must first analyze how students interpret statements with shortcut
codes in order to develop more e↵ective teaching methods for them. Investigating
this phenomenon can help us pinpoint the elements that may influence students’
comprehension of shortcuts.
Method: We conducted an eye-tracking study to monitor students’ visual atten-
tion while they participated in understanding simple shortcut programs. The study
included 21 students in all, and behavioral and visual-attention data were gathered.
Results: We discovered clear evidence that was knowing shortcuts influences how
well programs are comprehended. Regarding visual attention, we found that after
being taught the shortcut, they were able to comprehend the program with ease.
Conclusion: When students are introduced to shortcuts, there is a di↵erence in how
quickly they understand algorithms. The same group’s visual attention is equally
indistinguishable for short-term understanding.
Future Work: Furthermore, research is required to draw results that are more gen-
eral, for instance using more complex shortcut code or allowing students to write
their own code using shortcuts. A more accurate understanding of the core cogni-
tive process underlying program comprehension may be gained by measuring the
cognitive load, such as pupil dilation.
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1 Introduction

1.1 Motivation and Relevance

This thesis aims to share information about students’ comprehension of shortcut
code. We investigated how the shortcuts a↵ected students’ behavior and visual
attention to complete a specific task. We also trained a group of students and divided
them into two groups to gain additional insights. If we discuss why understanding
some unusual line of code is valuable, we can notice that a programmer encounters
multiple code fragments while learning or developing algorithms. This motivates us
to explore the possibilities of the problems that occurs when a program encounters
unusual statement. At that moment, the awareness of the shortcuts and syntax
is challenged by the large code base. This is crucial for programmers since they
frequently encounter di↵erent ways to carry out various operations. When writing
code for comparable operations, various programmers use di↵erent writing styles
and methodologies because a variety of solutions may be able to yield the same
outcome. However, in the end, what matters is whether other programmers can
understand what has been accomplished after utilizing that specific statement. This
encourages us to investigate whether there are any appreciable di↵erences in how well
various experienced groups understand any particular syntax or shortcuts embedded
in di↵erent aspects of code. It also gives us information about their programming
knowledge and problem-solving abilities. On the other side, if a group of students is
taught the shortcuts, can they understand the code and how e↵ectively they could
use those shortcuts in various contexts to get results? Often programmers with a
grasp over any particular language will produce the result by using some shortcuts
or few logical statements as compared to the novice or intermediate experience level
programmer. Their statement can be more e�cient with optimal time and space
complexity. Even when the programmer has encountered some shortcuts in their
past experience, are they still able to comprehend them?

1.2 Research Objective

In this paper, our objective of work is to present some insights into whether students
are able to comprehend shortcut code. To accomplish our task, we examined how
the shortcuts a↵ected students’ behavior and visual attention. Further, to gain more
insights, we included trained a group of students and then categorized them into
two separate groups.
To add clarification to our objective, we address the research questions as.
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1 Introduction

1. While comprehending the source code do program shortcuts a↵ect students’
response time and correctness?
2. While comprehending the source code program shortcuts a↵ect students’
visual attention?

We will touch the following hypothesis and later conclude whether training the
student add much more value in understand the code with shortcut statement(s)?
Behavioral Data:
H0: There is no significant di↵erence in ”Response Time” between both groups.
H1: There is significant di↵erence in ”Response Time” between both groups.
H2: There is no significant di↵erence in ”Correctness” between both groups.
H3: There is significant di↵erence in ”Correctness” between both groups.
Visual Data:
H4: There is no significant di↵erence in ”FirstPassDuration” between both groups.
H5: There is significant di↵erence in ”FirstPassDuration” between both groups.
H6: There is no significant di↵erence in ”SecondPassDuration” between both groups.
H7: There is a significant di↵erence in ”SecondPassDuration” between both groups.
H8: There is no significant di↵erence in ”noOfFixtionsInAOI” between both groups.
H9: There is significant di↵erence in ”noOfFixtionsInAOI” between both groups.

1.3 Research Design

Each participant was familiar with the basics of Python. The snippets will be
shown sequentially to each participant, and behavioral and visual data were gathered
that will be essential to the analysis and conclusions. There were 21 participants
altogether, and 11 of them took the pretest to become familiar with the shortcuts. In
the study, we tracked the user’s eye movement using a Tobii Pro Fusion eye tracking
device. The study was carried out on PyschoPy and at the end of each exercise
students were then asked to choose the right response from the four options after
each exercise in the research. The behavioral and correctness data were generated
at the completion of each test.

1.4 Research Implications

The main goal is to find out whether there is any significant di↵erence between
understanding shortcuts (special syntax) used in any code amongst di↵erent experi-
enced groups. It also provides us insights into their knowledge of the programming
language and problem-solving skills. On the other hand, if the shortcuts are taught
to a group of students, can they comprehend the code and how well they could
perform using those shortcuts in di↵erent scenarios to achieve di↵erent results?
The following sections will provide details of our research and findings.
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2 Literature Review

2.1 Program Comprehension

2.1.1 Reading Order of Programmers

A key task in software development, programmers’ comprehension of source code has
been the subject of extensive research over the past few decades [96, 97]. Program
comprehension, the fundamental cognitive process, is a requirement for all ensuing
programmer tasks, including testing, debugging, and maintenance. There are two
basic approaches that programmers use to understand software, according to previ-
ous studies. When programmers lack the subject expertise, experience, or context
necessary to e↵ectively grasp source code, bottom-up comprehension is used [63].
Instead, in order to get a comprehensive understanding, users must comprehend
individual source code lines and statements and integrate their semantic meaning
(i.e., chunking [80]). When programmers utilize prior knowledge or domain expertise
for a productive hypothesis driven comprehension process [86], for as when using
variable Identifier [14, 61].
Even while these existing comprehension models are supported by some evidence,
there are still some unknowns, such as when and how programmers can use top-down
comprehension. Because it involves internal cognitive processes, measuring program
understanding is inherently challenging [82]. Conventional approaches, such think-
aloud protocols or task e�ciency testing, are unable to o↵er profound insights into
the cognitive mechanisms underpinning program comprehension [61].
Observing how programmers read source code is a crucial part of understanding pro-
grams. Eye tracking has been e↵ective for observing programmers reading source
code and addressing such basic research issues as program comprehension (e.g.,
[19, 79, 99]). For instance, Sharif and Maletic used eye tracking to replicate a tra-
ditional study and discovered that name style influences program comprehension in
that programmers can comprehend di↵erent styles [13, 79, 61].
The linearity of the reading order may be a measure of how well programmers under-
stand source code, according to earlier studies [19]. Multiple eye-gaze measurements
to evaluate the linearity of reading order were described in the pioneering work by
Busjahn et al. They demonstrated that both skilled programmers and beginner
programmers scan source code less linearly than natural text [19]. According to this
study, understanding source code is a skill that must be acquired via practice [61].
In this study, they delve deeper into the significance of reading order linearity for
program comprehension. They specifically want to know how programmers’ read-
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2 Literature Review

ing habits are influenced by their comprehension strategies and the linearity of the
source code itself. To more precisely assess program understanding with eye track-
ing, it is essential to comprehend all the elements that a↵ect programmers’ linearity
of reading order. To do this, they used novice and experienced programmers in a
non-exact replication of the Busjahn et al. and Peachock et al. experiments [61].
To determine the impact of source code linearity, programmer experience, and com-
prehension technique on the reading order of source code. The research was moti-
vated by Busjahn et alpioneering’s study [19] and the replication study by Peachock
et al [60]. According to their findings, expertise and comprehension technique ap-
pear to have less of an impact on programmers’ reading order than the linearity of
source code. They appear to have discovered a turning point when programmers
shift from a linear reading order to a reading order following the execution order,
with their intermediate programmers’ experience level falling between the two prior
studies. The substantial influence of linearity implies that the source code’s organi-
zation should meet the expectations of the programmer in order to prevent needless
eye movements and maybe improve program comprehension. They plan to go more
deeply into the magnitude of the e↵ect of source code linearity, programmer expec-
tation, and experience level in further investigations [61].

2.1.2 Abstraction and Complexity in Program Comprehension

The talent of programming has several facets. It is generally acknowledged that pro-
gramming involves more than just writing code and also includes important abilities
like understanding programs, designing, and testing [33, 49, 50, 93, 94, 103]. The
component of program comprehension that this article focuses on is one that is
stressed in many pedagogical approaches to teaching beginners about programming
[38, 45, 57, 77, 105], but it is equally important for specialists like seasoned software
developers [42, 89]. Previous research [15, 18, 47, 62, 75] examined several facets
of program comprehension, including how students progress from textual pieces to
higher levels of abstraction and how program parts express overarching objectives.
The idea that comprehension can be characterized as the creation of a mental image
of the program is shared by everyone [76].
Research on human cognition, particularly Chunking [20, 55] and Schema Theory
[73], which explains how students deal with a large number of concepts and integrate
them to form a mental model of the dynamic elements of program execution, has
a significant influence on research on program comprehension. The idea of plan-
schemata, which was established in early Computing Education Research (CER) re-
search, is essential to comprehension (e.g., References [67]). Planschemata function
as ”a library of archetypal answers to issues as well as mechanisms for coordinating
and assembling them” [85]. The following terminology is used in this article:

1. The idea that comprehension can be characterized as the creation of a mental
image of the program is shared by everyone [76].

2. (Standard) Plans relate to code portions since they are programming language
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2 Literature Review

realizations of a plan-schema. It depends on the context and instruction what
constitutes a standard plan. In this work, they take guard, average, counter,
and sentinel plans—extracted from Soloway and Ehrlich [87]—as examples of
standard plans.

3. According to Soloway’s definition, customized plans are those that have been
altered, such as applying a FindMaximum-plan on an array while storing the
index of each candidate [85].

4. Code parts that do not match any plan-schemata are referred to as unplan-like
code.

A plan-composition strategy is one of the techniques students adopt, according to
the literature on how they write code sections [85]. Students might order (adjacent)
plans, for instance, where one plan’s execution is independent of the others or where
one plan’s output is used as an input for subsequent plans. Another tactic is to
combine all of the plans into a single code section, where each plan’s execution is
sandwiched between the others. A FindMaximum-plan and a FindMinimum-plan
having the same loop code would be an example. Students who employ merged plan-
compositions have been shown to create code that is more prone to errors [26, 87],
yet they still believe it to be ”better” [27]. It has been proposed [23] that due to
decreased element interactivity [92], i.e., plans that require learners to absorb them
simultaneously, sequenced programs may be easier to understand than merged ones.
Therefore, it makes sense that sequenced composition is advantageous for compre-
hension as well as for producing code [27]. They are curious to know if plan-schemata
and the structure of code sections have any direct impact on how well code is under-
stood. Plans in programming have been shown to be more e↵ective than unfamiliar
code in the past [87], but no direct research has been done on the impact of plans,
tailored plans, unplan-like code, or the structure of such code sections on learners’
comprehension behavior. To close this gap, they carried out a study with a purpose-
ful sample of people who had been carefully chosen to have access to plan-schemata.
This article o↵ers three contributions: First, we o↵er insights into how plan-schemata
may impact the process of program comprehension. Second, they look into the im-
pact of such solutions’ composition on program understanding. They accomplish
this by utilizing cutting-edge research techniques and eye-tracking data. They adopt
plans as the unit of measurement, focusing on more significant pieces of information
rather than saccades and transitions between keywords or syntactic parts. This
methodology makes it easier to do the study because it involves less precise eye-
tracking techniques and yields more insightful data on the program comprehension
process. The setting for a study design is as a result our third contribution: They
can utilize a mix of non-invasive sampling of high-quality eye-tracking data enhanced
with insights from retrospective interviews [31] by using the model-building assump-
tion (see Section 3.4) and its verification.
Summary. Regarding RQ 1: How does program understanding di↵er depending
on whether plan-schemata are available? Plans were discovered to be more rapidly
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grasped than personalized plans. Therefore, they assume that plan-schemata made
chunking happen more quickly, which sped up the understanding process. Qualita-
tive interview data shows that students thought customised plans were comparable
to plans, which, in contrast to code parts that don’t resemble plans, may have
helped them understand programs. A statistically significant e↵ect, however, could
not be seen in this case. Below, some explanations for the ambiguous findings are
presented.
Regarding RQ 2: How does program comprehension depend on the structure of
code sections? When compared to sequenced code, they found that code given in
a merged form greatly increases the frequency of transitions between various code
blocks. Data from interviews confirmed that this e↵ect was caused by a greater
challenge in finding interconnections between code blocks in merged compositions:
Element interactivity is increased through combined code composition. According
to the fact that these e↵ects were observed for both code blocks with the same level
of familiarity as well as for code blocks with di↵erent levels, they are independent of
familiarity. However, they didn’t see any strong evidence to suggest that this also
impacts how long it takes to understand a code.
Although the study’s materials were piloted (see Section 3.3), several unintended
consequences nonetheless had an impact on the results. They advise considering
certain factors when using the setup we provided: In Omega, they noticed that
some participants found a particular idea that wasn’t in the companion program to
be surprisingly challenging. They also found that for programs that were either too
simple or too tough, there was no discernible influence of code composition on the
amount of time required to perform the initial input-to-output conversion operation.
It is important to match students’ cognitive resources with the task di�culty if one
wants to research the impact of a prospective feature that makes it more di�cult.
It is important to challenge students without overwhelming them [74].
They found that understanding plan-schemata had a good overall impact on pro-
gram comprehension. This study thus emphasizes the significance of encouraging
the growth of such plan-schemata in beginner programmers once more. They also
saw a code composition e↵ect and discovered signs that a combined code compo-
sition method may make understanding more di�cult by making elements more
interactive because di↵erent code parts must be analyzed together rather than in-
dividually. However, more research is necessary.
This work makes a methodological addition by presenting a setup that enables the
use of eye-tracking data to analyze program understanding. Multiple time-sensitive
input-to-output conversion tasks allowed them to see evidence that participants did
create a mental model during the first task, which they then used in subsequent
tasks. They recommend that this assumption can be applied in future e↵orts to
deliver high-quality data in program comprehension studies using the approach we
gave.
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2.1.3 Program Comprehension in professional developers

Understanding programs is a crucial task in software maintenance. According to
Fjeldstadand Hamlen [28], it takes up around half of the time that developers spend
on maintenance. Program comprehension, according to Singer et al. [84], primarily
occurs prior to modifying code because developers must examine source code and
other artifacts to locate and comprehend the portion of the code that is pertinent
to the desired change. Developers may use di↵erent approaches to comprehend soft-
ware depending on their personalities, experiences, skills, and the work at hand.
This study aims to examine the current state of program comprehension practice
and discover how programmers in industry interpret programs. Our goals include
deepening our understanding of program comprehension practice, investigating the
application of research findings in practice, confirming the outcomes of related stud-
ies, and addressing the shortcomings of past research. Additionally, the hypotheses
derived from our observations serve as the basis for a research agenda that is moti-
vated by unmet needs [70].
There are gaps in earlier empirical investigations of program comprehension tech-
niques, necessitating a more thorough, current investigation. For instance, the inves-
tigations by Singer et al. [84] and Fjeldstad and Hamlen [28] are relatively ancient.
New programming languages, like Java, and methodologies, like agile development
and opensource development, have gained popularity since their study. Developers
from a single business are studied by LaToza et al. [46] and Robillard et al. [68]
conducted a lab investigation with only five developers. Their study, which has a
bigger sample size of 28 developers, examines developers who work in various firms
of various sizes and across a variety of technologies. Additionally, they use a distinct
approach that enables thorough explanations of the reasoning and ideas behind ob-
served behavior [70].
Their study, which has a bigger sample size of 28 developers, examines developers
who work in various firms of various sizes and across a variety of technologies. Ad-
ditionally, they use a distinct approach that enables thorough explanations of the
reasoning and ideas behind observed behavior [70].
This study aims to investigate qualitatively how program understanding is carried
out in the software business. This entails researching the practical use of program
comprehension tools, developing theories regarding industrial program understand-
ing, and putting them to the test. Since the distribution and features of the entire
population are unknown and their sample is, statistically speaking, somewhat tiny,
they refrain from quantifying several aspects of comprehension. Furthermore, they
don’t specifically pursue novel theories. They examine three key areas in order to
organize the research and concentrate their e↵orts: the tactics developers use, the
information they interact with or that is missing, and the tools they employ. The
question that they touched were [70]

1. RQ1: Which strategies (including steps and activities)do developers follow to
comprehend programs?
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2. RQ2: Which sources of information do developers use during program com-
prehension?

3. RQ3 : Which information is missing?

4. RQ4: Which tools do developers use when understand-ing programs and how?

One of their most intriguing results is that developers often try to put themselves
in the shoes of end users. They saw developers examine the user interface behavior
and contrast it with the desired behavior. This method seeks to comprehend pro-
gram behavior and obtain initial cues for deeper program investigation. It o↵ers an
alternative to troubleshooting and reading source code. Additionally, programmers
occasionally strive to avoid comprehending their own code. Instead, they copy the
source code and modify it to complete the work at hand. Cloning avoids understand-
ing the potential e↵ects of directly altering code. Due to the time and mental work
required, developers appear to choose solutions that prevent comprehension wher-
ever possible. Program understanding is not viewed as a goal in and of itself, but
rather as a necessary step to complete certain maintenance responsibilities. They
discovered that standards and expertise are crucial facilitators for quickly becom-
ing comfortable with an unfamiliar program and identifying entry points for further
research when software architecture and code need to be investigated. Depending
on their work situation, the majority of observed developers pick from a variety of
structured comprehension tactics (such as adhering to a problem-solution-test work
pattern). The type of work at hand, the kind of program to understand, prior un-
derstanding of the program, and the developer’s overall experience make up context
[70].

2.2 What (Else) Should CS Educators Know?

The qualifications needed to teach in a scientific discipline di↵er from those needed
to practice or do research in it. While the work of the former requires extensive
knowledge and skills in the field itself, that of the latter also requires the ability to
accurately and reliably communicate this knowledge to others, to teach the afore-
mentioned skills, to provide perspective, and to arouse the interest, curiosity, and
enthusiasm of the students. All of this necessitates the educator becoming more of
a scientific intellectual, at least in terms of the relevant discipline. While some of
this is a matter of personality and innate aptitude, they contend that some of it
may be learned by being exposed to material that extends beyond the technical core
components of the area [30].
As these problems emerge in the CS sector, they examine them in further detail.
They specifically point out some of the additional content that CS educators should
learn in addition to what is typically covered in an undergraduate CS curriculum.
They have created an undergraduate course out of this content as an intriguing
byproduct of their work, and they have some experience teaching it [30].
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They have suggested topics for a course for CS educators in the more practical sec-
tion of this post, even mentioning that some of this should be interesting to people
outside the CS community. But they haven’t been clear enough on how such a
course should be taught, how the hours should be split up, and so on. This is done
intentionally because they don’t think there has been enough experience in these
areas to o↵er definitive, strict suggestions. In any event, we think instructors should
design the course as they see fit [30].
They have some experience putting the concepts mentioned here into practice. Such
courses have been taught by Gal-Ezer at The Open University and Tel-Aviv Uni-
versity, both in Israel. The course uses a reader with about 30 papers and a custom
created study guide. They find it quite helpful to have students write extensive term
papers, and they also want to have a number of invited lecturers in the hopes that
the students will benefit from both what they have to say and how they express it
[30].
One of the key takeaways they took away from teaching the course was the necessity
of students having a solid background in computer science. This point cannot be
emphasized strongly enough. One student in the class was an electrical engineer,
another only had a passing link to computing because she used computers in general
education, and a third student had CS knowledge that was 25 years old. Simply
put, these students did not fit in. In conclusion, even though our suggestions are
not entirely full, they hope that their work will aid in the creation of such courses
and in choosing their structure and contents [30].

2.3 Shortcuts

Through the use of written-down sounds and symbols, language allows individuals
to communicate. People learn language as a result of their life experiences, but
linguistics, the scientific study of languages, goes far further in its examination of
word patterns and implications. Computer programming languages, the subject
of this text, fall under this academic discipline. Programming languages can be
thought of as artificial languages created by men and women initially for the purpose
of communicating with computers, but also, and perhaps more importantly, for
the purpose of communicating mathematics among people, as opposed to natural
languages, with which we communicate our thoughts and feelings. Programming
languages make use of many linguistic concepts and terminology. For instance,
syntax and semantics constitute the majority of language definitions [37].

2.3.1 Syntax

The syntax of a programming language is used to express a program’s structure, but
the content of the program itself is ignored. It involves applying a set of guidelines
to check the order in which symbols and instructions are utilized in a program. The
main function of Grammars, which are rewriting rules, is to create programs. There
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are just a few number of pre-formed grammatical categories, words, and rules that
make up grammar. These formal and informal techniques can be used to comprehend
a programming language’s syntax [37]:
Lexical syntax These syntax describe the rules for basic symbols like as identifiers,
literals, punctuation, and operators.
Concrete syntax This syntax describes the lexical units, usually referred to as
tokens, of a computer language. It emphasizes the expression’s appearance further.
Abstract syntax This syntax only conveys the application’s most crucial informa-
tion.

2.3.2 Syntax Error

In the realm of computer science, a syntax error is a mistake made by a programmer
in the syntax of a coding or programming language. Finding syntax problems in a
program is the job of a piece of software called a compiler. Before the software is
produced and run, the errors must be rectified by the programmer. Programming
languages are intended to be extremely exact and unambiguous, therefore if they
disregard or violate the language’s terminology, they commit a syntax error. As a
result, the software will be unable to run and will instead generate a helpful error
message [35].

2.3.3 Semantics

The meaning of syntactically sound statements is explained by the semantics of a
language. When it comes to natural languages, this involves linking specific words
and phrases to specific concepts, thoughts, and feelings. The study of semantics
focuses on how computers respond to commands in programming languages. This
behavior might be demonstrated, for instance, by detailing how a program would op-
erate on a real or imagined computer or by showcasing the relationship between the
code’s input and output. The term ”semantics” is quite helpful when attempting to
comprehend how a programming language’s syntax and computation model relate to
one another. It emphasizes the interpretation of a program so that the programmer
can predict or understand its results with ease [35]. Utilizing a functional mapping
of syntactic constructions to the computational model, syntax-directed semantics is
used. Some approaches to describing the semantics of a computer language include
algebraic semantics, axiomatic semantics, operational semantics, and denotation se-
mantics [29, 98].
Algebraic semantics Information and language structures are expressed using al-
gebraic notation in algebraic semantics. Providing a formal, axiomatic explanation
of the attributes of various sorts of objects and actions on those objects is the aim
of the algebraic approach to semantics.
Operational semantic Operational semantics aims to convey the meaning of a
program starting from a specific state by examining its end result, or the state
in which the memory remains after the program has been executed. This can be
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accomplished by checking the memory’s condition once the program has finished
running.
Denotational Semantics This semantics is predicated on the idea that a program
may be viewed in a manner similar to that of a mathematical function, i.e., that a
program’s impact may be perceived as a mathematical function in state.
Axiomatic Semantics Axiomatic Semantics examines if a given program is par-
tially correct (with regard to pre and post-condition). It creates assertions about
an association to be checked at each stage of the program’s execution in order to
determine the application’s intended use (i.e., implicitly).

2.3.4 Semantic Error

Even if your software is successfully compiled, it could still be challenging to get
it to produce the desired outcomes. A semantic error is when a statement has the
intended meaning but does not actually have it. This can happen even when the
syntax of the statement is valid. A semantic error, as opposed to a syntactic error, is
a misunderstanding of the intended meaning. This kind of issue will allow a program
to run, but the outcome it generates won’t be accurate.

Table 2.1: Di↵erence between Syntax and Semantics
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3.1 Study Pattern

Choosing whether to conduct the quantitative usability research between or within
individuals is a component of the experimental design [90]. There are two methods
that could be used:
Between-subjects study experiment: This study’s design entails giving each
test subject a unique user interface. In this manner, a single user interface is used
by each test subject [90].
Within-subjects study experiment: In this study design, all of the user inter-
faces you’re assessing are presented to each test subject. Each test subject will so
experience every circumstance [90].
Usually, independent variables and dependent variables are used in quantitative us-
ability studies. Dependent variables are those that are measured in relation to chang-
ing independent factors, whereas independent variables are those that researchers
manipulate. The code snippets in our example would be independent variables, and
the behavioral and visual data that the user produced while the accomplishment
of the task would be the dependent variables. The aim of the usability research in
this scenario may be to ascertain whether the dependent variables change or stay
the same while the independent factors are constant. As our independent variable
is same for all the participants we follow the within subjects study experiment.
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Figure 3.1: Di↵erence between With-In and Between Study Design [17]

3.2 Selection of Code Snippets

The idea of a code’s Basic Control Structure (BCS) and cognitive weights are im-
portant factors when selecting code fragments for study. One of the main causes
of this is that it is challenging to create an experiment that can gauge the mental
e↵ort required to comprehend the impact of di↵erent programming constructs and
how they interact. Since there are countless variations, we are unable to choose and
compare any random code fragments of di↵erent programming structures in such
tests. With the exception of changes that are inherent in syntax, we demonstrated
with examples the many factors and challenges involved in choosing code snippets
for various programming constructions [39].
A number of psychological code snippets approach can be carried out to obtain
meaningful code fragments. A series of necessary measures not just to verify the
cognitive weights of various programming constructs, but there to develop reliable
metrics for code complexity. These will be helpful for understanding the cognitive
load needed to acquire the principles of shortcuts used in our experiments [39]. To
assess the complexity concealed within the software, numerous metrics like Line
of Code (LOC), Halstead measures, and McCabe’s cyclometric measurements have
been proposed in the past [53]. All of these metrics only account for certain facets
of complexity while neglecting others [39].
None of these, however, adequately reflects the mental e↵ort needed to comprehend
the software code, which is a human aspect of software complexity. To reflect the
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complexity of the software, Shao and Wang introduced a new measure of cognitive
weights size in 2003 and the cognitive weights of 10 Basic Control Structure (BCS)
[78]. Following a series of student-subject psychological investigations, Wang ad-
justed the cognitive weight of the 10 Basic Control Structure (BCS) in 2006 [102],
[101]. After that, other metrics based on the cognitive weights introduced in 2003
and 2006 [24], [40], [56] were proposed by various researchers. In 2007 Gruhn and
Laue identified a number of problems with Wang’s psychological experiments [34].
He also discussed the di�culties assessing the cognitive weights of recursion Ba-
sic Control Structure (BCS) because of its special characteristics. Additionally, he
recommended that we add three additional control structures, namely locks, excep-
tions, and internal exits, to the table set of Basic Control Structure (BCS). He listed
a few safety measures that should be considered while planning any such trials. The
same type of study was carried out by David Admino in 2015, and he came to a
quite di↵erent conclusion as Wang [9] in an unpublished paper (but one that is
accessible on the Research Gate website). In a paper published in 2017, Ajmi et
al. conducted an experiment and demonstrated that the complexity of a portion of
code depends on a variety of factors, including the predicate’s expression style and
the idioms used (for example, in looping structures) [10]. The latter aspects were
not taken into account in the software code complexity computation in the original
Wang and Shao metrics in 2003 and 2006 [78], [102].

3.2.1 Basic Control Structure (BCS) Cognitive Weights

The idea of cognitive functional complexity of software was first suggested in 2003
by Yingxu Wang [78]. Cognitive weights are assigned to the BCS basic control
structures in this metric. Basic Control Structure (BCS) is a collection of funda-
mental and necessary flow control techniques that are utilized in the construction
of software’s logical architecture [39].
In these measures, the weights of a Basic Control Structure (BCS) are multiplied if
they are embedded in another Basic Control Structure (BCS) or added together if
they are in series to determine the component’s overall cognitive weight. The sum
of the cognitive weights of each of a software component’s q linear blocks that make
up an individual Basic Control Structure (BCS) is known as the component’s total
cognitive weight or Wc. Given that each block may have m layers of nesting Basic
Control Structures (BCSs) and n linear Basic Control Structures (BCSs) in each
layer, the equation can be used to determine the overall cognitive weight, Wc (1)
[39].

Wc =
Pq

j=1[
Qm

k=1

Pn
I=1(Wc(j, k, i))] . . . (1)

The weights for the various Basic Control Structure (BCS) are assigned in this
metric, as stated in table 3.1. These weights are dependent on how di�cult it is
for a person to understand these Basic Control Structure (BCS). A fundamental
software component’s Cognitive Functional Size (CFS), which is determined by its
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single method and the sum of its inputs and outputs Ni/10, is determined by the
overall cognitive weight, i.e.: [39].

Sf = Ni/10 ⇤Wc . . . (2)

Table 3.1: Cognitive Weights of di↵erent Basic Control Structure BCS-Wang 2003
[78]

However, Wang proposed revised weights for several Basic Control Structure (BCS)
in 2006, which are listed in Table 3.2 [102]. Wang altered the Basic Control Structure
(BCS) weights, but the technique for determining the software’s overall cognitive
complexity has not changed. In a previously unpublished article (but one that is
accessible on the Research Gate website), David Admino ran similar experiments in
2015 and came to a fairly distinctive conclusion than Wang [9], which can be seen
in table 3.3 [9].
The guidelines listed below were provided by Gurhn and Laue for carrying out
studies of this nature [34]. These consist of [39].

• Code length, variables-Number, types, and names are constant.

• Multi-language experimentation.

• Various responses with varying levels of experience.

• Adequate repetitions.

• Adhering to the rigid experimental investigation methodology.
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Table 3.2: Cognitive Weights of di↵erent Basic Control Structure BCS- Wang 2006
[102]

Table 3.3: Cognitive Weights of di↵erent Basic Control Structure BCS-David Ad-
mino 2015 [9]

3.2.2 Line of Code (LOC)

We think that rigorous adherence to the premise of the same code length for all
snippets to be compared may not be the wisest course of action. First of all, dif-
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ferent languages may display varying lines of code (LOC) for the identical logic
expression. Second, Line of Code (LOC) di↵erences are present because of the fun-
damental structure of di↵erent Basic Control Structure (BCS). For instance, the
Line of Code (LOC) of later in comparable code snippets of sequential and if-else
will di↵er because of the presence of at least one condition statement and potentially
two pairs of curly braces in if-else, which increases the Line of Code (LOC) of later
[39]. When using nested if-else instead of a single logical expression in condition
statements, Ajami et al have demonstrated that the same logic solves more quickly
than when using a single logical expression, despite the fact that nested if-else has a
far higher Line of Code (LOC) [10]. We are not advocating the complete abolition
of this code length factor. While we continue to maintain that the Line of Code
(LOC) of code snippets shouldn’t fluctuate significantly, all we are saying is that
these rules cannot be legally enforceable for carrying out such trials [39].
It adds the additional requirement of having the same quantity and variety of oper-
ators and variables. By doing this, we eliminate the variation that may result from
changing Line of Code (LOC), using various operators, and using varied variable
types. Because we think, based on experience, that not all operators are the same
and that they do di↵er in complexity [39]. The Basic Control Structure (BCS) Cog-
nitive Weights and Line of Code (LOC) in our study is declared in table 4.1

3.3 CUDA framework GPU

Python is the core for data analytics and deep learning applications. NVIDIA,
on the other hand, showed a great commitment towards making a contribution to
the python ecosystem to enhance the parallel performance of GPU to improve the
compatibility with standardized libraries, tools, and applications. Python CUDA
ecosystem o↵ers full access to the CUDA host API. It makes it easier for developers
to use NVIDIA GPUs [58].

What is CUDA Python?
CUDA from NVIDIA Python o↵ers Cython bindings and Python wrappers for the
driver and runtime API for pre-existing toolkits and packages to make GPU-based
accelerated processing simpler. One of the most widely used programming languages
is Python, which is used for applications in data analytics, deep learning, engineer-
ing, and science. In order to provide complete coverage of and access to the CUDA
host APIs from Python, CUDA Python aims to integrate the Python ecosystem [6].

Why Python CUDA?
CUDA Python o↵ers consistent APIs and bindings that may be included in current
toolkits and libraries to make GPU-based parallel processing for HPC, data science,
and AI is more accessible. Numba, a Python compiler from Anaconda that can com-
pile Python code for execution on CUDA-capable GPUs, o↵ers Python developers
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a simple entry into GPU-accelerated computing and a path for using CUDA code
with increasingly complex features while introducing the least amount of new syntax
and jargon possible. CUDA Python can now take the place of Numba’s proprietary
CUDA driver API bindings. The speed of a compiled language that is optimized for
both CPUs and NVIDIA GPUs is combined with the rapid iterative development
capabilities of Python to give you the best of both worlds with CUDA Python and
Numba [6].

Figure 3.2: Complexity and performance in heterogeneous computing can be traded
o↵, developing own CUDA code can significantly reduce run-time. [95]

CuPy is a NumPy/SciPy compatible Array library for Python GPU acceleration de-
veloped by Preferred Networks. When importing the CuPy Python module, CUDA
Python speeds up the process and reduces the memory footprint. When more CUDA
Toolkit libraries are available in the future; CuPy will require less maintenance and
have fewer wheels to release. A quicker CUDA runtime is good for performance. The
Python CUDA ecosystem o↵ers comprehensive coverage of and access to the CUDA
host APIs from Python using a single set of standard interfaces. The ecosystem
is to be built upon in concert with combining various accelerated libraries to ad-
dress the issues. It also makes it easier for programmers to access NVIDIA GPUs [6].

Python CUDA Workflow:
Python is an interpreted language, so you’ll need a mechanism to translate the
device code into PTX before you can extract the function that will be used later
in the application. Parallel Thread Execution (PTX) is a low-level virtual machine
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and instruction set architecture, though it is not necessary to comprehend CUDA
Python (ISA). Your device code is created as a string, and NVRTC, a runtime
compilation library for CUDA, is used to compile it. Create a CUDA context and
the necessary resources on the GPU manually using the NVIDIA Driver API. Then,
run the produced CUDA code and get the output from the GPU [7].
Compared to standard general-purpose GPU (GPGPU) computing using graphics
APIs, CUDA o↵ers the following benefits [83]:

• Random reads: Code is capable of reading from any address in memory.

• Common virtual memory (CUDA 4.0 and above)

• CUDA presents a quick shared memory area that can be shared by multiple
threads. In contrast to texture lookups, this can be utilized as a user-managed
cache to enable better bandwidth.

• Improved download and readback speeds to and from the GPU

• Full support for bitwise and integer operations, including lookups for integer
textures.

• The CUDA cores are used for a function dubbed ”RTX IO” on RTX 20 and
30 series graphics cards, which significantly speeds up loading.

3.3.1 Numba for CUDA GPUs

Numba a just-in-time (JIT) compiler for python, performs best with code that
employs NumPy arrays, functions, and loops. The most popular way to use Numba
is to apply one of its many decorators to your functions to tell it to compile them.
All or a portion of your code can then run at native machine code speed when a call
is made to a Numba decorated function since it is ”just-in-time” (JIT) compiled to
machine code for execution [1].
Numba works with the following [1],

• OS: Windows (32 and 64 bit), OSX, and Linux (32 and 64 bit)

• Architecture: x86, x86-64, ppc64le. Experimental on armv7l, armv8l (aarch64).

• GPUs: Nvidia CUDA. Experimental on AMD ROC.

• CPython

• NumPy 1.10 to the latest

As shown in figure 3.3 Numba must transform an extremely expressive, dynamic
language into one that employs very simple, precise instructions tailored for dif-
ferent types. This is accomplished by Numba’s pipeline through a series of steps,
each of which moves the representation away from the Python source and toward
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Figure 3.3: Execution pipeline from Numba to Machine code [52]

machine-executable code. A limited fraction of Python code is immediately com-
piled by Numba into CUDA kernels and device functions in accordance with the
CUDA execution model to facilitate CUDA GPU programming. There seems to be
direct access to NumPy arrays in kernels developed in Numba. NumPy arrays are
automatically moved between the CPU and the GPU. The Python bytecode for a
decorated function is read by Numba, and then mixes it with details on the types
of the function’s input parameters. It then utilizes the LLVM compiler library to
create a machine code version of your function that is suited to your CPU capa-
bilities after analyzing and optimizing your code. Then, each time your function
is called, this built version is applied [1]. Using the LLVM compiler infrastructure,
Numba converts pure Python code into e�cient machine code. Without switching
languages or Python interpreters, array-oriented and math-intensive Python code
can be optimized just-in-time to perform on par with C, C++, and Fortran [2].
Main features of Numba [2]:

• Live code creation (during import or runtime, depending on the user’s option)

• CPU and GPU hardware native code generation.

• Numpy interaction with the Python software stack.
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3.4 Eye Tracking Data Extraction

Eye tracking is a technology that records and analyzes a user’s eye movements and
positions. An eye tracker can be used to gather and store eye data. Eye-tracking
data provide previously unattainable insights into human behavior and surround-
ings, digitizing how users interact with computers and opening up new possibilities
for passive biometric-based classification techniques like emotion, cognitive predic-
tion and patterns. Reviewing the features and characteristics that can be acquired
from eye-tracking data for the classification problem is our goal [48].

Figure 3.4: Detection of Eye Moment [4]

The interface between artificial intelligence (AI) and human-computer interaction
(HCI) is becoming more and more popular currently. Today, more and more im-
portant attempts are being made by scientific experts to study unique interactions
between humans and technology. Since machine learning can learn automatically
and do specified tasks at a human level of proficiency without the assistance of a
human expert, studies on classification using machine learning, including emotion
prediction and image classification, have gained a lot of popularity. There are there-
fore studies on classification using various methods, such as picture classification
using neural networks and emotion classification utilizing brainwave signals [100],
[104]. The work by Nilsson was a sample study on learning machines. However, it fo-
cused more on machine learning for pattern classification [59]. In recent years, there
have also been more studies on eye tracking. The topic of how eye-tracking data
can be used in study drives many researchers’ experiments. Therefore, the ques-
tion of what eye traits may be extracted from eye-tracking data for classification
arises when using eye-tracking technology in classification research. Eye-tracking
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technology is the method of monitoring and calculating a user’s eye movements and
focal points. Eye tracking is frequently utilized in a wide range of fields, including
psychology, marketing, medicine, video games, and cognitive research. As a result,
computer science departments are increasingly using eye tracking, which makes use
of eye features to research information processing problems [65]. An eye-tracking
sensor or a camera can be used to measure and collect eye-tracking data. The data
o↵er a variety of attributes and can be applied to a variety of classification tasks.
As it simply needs a basic camera to capture the necessary data, eye-tracking tech-
nology is quite useful, and it can be extensively adopted and applied in the future
[48].

3.4.1 Eye-Tracking Technology

An innovative technology called eye-tracking technology is used to track a user’s eye
movements or point of fixation. It is a technique of determining a person’s point
of gaze or eye location and gathering information about their ocular characteris-
tics. The results are recorded as data, which includes detailed statistics like fixation
counts, first fixations, and fixation length. These captured data can be examined,
and the ocular features can be extracted utilizing visual analytic methods. Using
a visual analytical technique will help you see typical visual problem-solving tech-
niques better [11]. Data visualization tools like heatmaps and saliency maps can be
used to visually explore and evaluate eye data [48].
Fixations, saccades, and scan paths are the three primary ocular activity indicators
that can be used to classify eye-tracking data. Fixations, which last between 100
and 400 milliseconds and stabilize the retina above a stationary object of interest
are eye movements. The fixations are generally in the middle, and the eye moves
slowly. Ocular drifts, ocular microtremor, and microsaccades are their distinguishing
features [64]. Saccades are rapid eye movements performed by both eyes to transfer
the fovea, the central region of the retina, to a di↵erent spot within the visual field.
Saccadic motions are reflexive and voluntary, and they normally last between 10
and 100 milliseconds [22].
Predictive saccade, antisaccade, memory-guided saccade, and visually-guided sac-
cades are the four di↵erent classifications of saccades [72]. The direction that a
viewer’s eyes move in when reading a text or taking in a scene is referred to as the
scan path of eye movement. The information about the eye’s movements while the
visual field is scanned, and some type of visual data is evaluated and analyzed is
known as scan path data. The resultant series of saccades and fixations is a scan
path [48].

Eye-Tracker
An eye tracker is a tool for detecting eye movements and positions. It is designed
to track a subject’s eye movements as they proceed through a task and pay atten-
tion to a stimulus in order to gauge their level of visual attention. Eye-attached
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Figure 3.5: Phases involved in Eye Tracking [54]

tracking, optical tracking and measuring electric potentials with electrodes are the
three categories of eye trackers. Tracking with the use of an eye attachment, such
as a specialized contact lens, is known as eye-attached tracking. On the assumption
that it does not move significantly as the eye rotates, the attachment’s movement is
computed. This technique enables the measurement of the eyes’ torsional, vertical,
and horizontal eye movement [69]. Optical tracking tracks the positions that are
attached to an object and uses that information to identify the position of the object
in real-time. Using a camera gadget, the reflex point’s location is identified. With-
out coming into touch with the eye, the optical technique monitors eye movement.
This approach is frequently used for gaze tracking, particularly those that involve
video capture and is favored since it is less expensive and non-intrusive. The third
kind of eye tracker uses electrodes to measure electric potentials. Even with the
eyes closed and in perfect darkness, a constant electrical field emanating from the
eyeballs can be seen. The Electrooculogram (EOG) is an illustration of this tracking
technique [48]. It is a method for calculating the corneo-retinal standing potential,
which exists between the forehead and the retina of the eye. It is a very simple
approach that uses very few processing resources. It also functions in a variety of
lighting situations and can be used as an integrated, standalone wearable gadget
[88].
To track gaze direction, the majority of contemporary eye trackers combine near-
infrared technology with a high-resolution camera (or other optical sensors). The
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basic idea, known as Pupil Center Corneal Reflection (PCCR), is actually rather
straightforward. In essence, the camera tracks the corneal reflection of light and
the pupil’s center. The eye tracker receives information about the movement and
direction of the eye from the light reflected from the cornea and the center of the
pupil. As shown in figure 3.6 [25].

Figure 3.6: Pupil Center Corneal Reflection (PCCR) [25]

Machine Learning
Artificial intelligence (AI) in the form of machine learning (ML) enables computer
programs to forecast outcomes more accurately, without having been expressly
taught to do so. In order to forecast new output values, machine learning al-
gorithms use historical data as input. The predictions without being specifically
programmed to do so, it builds a model using the training data [44]. Precision or
accuracy estimation approaches are used in cognitive science to assess the e↵ective-
ness of emotion classification using machine learning. The Support Vector Machine
(SVM), K-nearest neighbor (KNN) and random forest were the three machine learn-
ing methods that were most frequently utilized. Based on the features from datasets,
predictions and classification tasks are carried out [43]. In several domains, including
computer vision, where the necessary tasks cannot be completed using conventional
techniques, machine learning can be used. A scientific study suggested a method for
determining a toddler’s age by looking at their gaze patterns [21]. Another study
uses eye tracking to identify personality traits from outside stimuli [12]. In order to
carry out certain tasks, machine learning also entails computer learning from infor-
mation or data provided [48].
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3.4.2 Eye-Tracking Features

Pupil Size
Beyond merely light, the pupils also react to other stimuli. They serve as a cue for
arousal, curiosity, or emotional exhaustion. Individual di↵erences in intellect are
directly related to the baseline pupil size. According to assessments of reasoning,
attention, and memory, the smarter the subject, the bigger the pupils. In fact, the
unaided eye was able to distinguish between individuals with the highest cognitive
test scores and those with the lowest baseline pupil sizes. The locus coeruleus, a nu-
cleus in the upper brain stem, with extensive neuronal connections to the rest of the
brain, is associated with an activity that a↵ects pupil size. Norepinephrine, a neuro-
transmitter and hormone that controls bodily and mental activities like perception,
focus, learning, and memory is released by the locus coeruleus. Additionally, it sup-
ports the healthy coordination of brain activity so that various brain regions can
cooperate to complete di�cult activities and achieve ambitious objectives. In fact,
the brain spends the majority of its energy maintaining this structure of activity
even when we aren’t doing anything at all, such as when we look at a blank com-
puter screen for hours on end [41].

Figure 3.7: Di↵erent stages in Pupil Dilation [3]

Fixation and Gaze Points
Fixations and gaze points are the primary output measures of interest and frequently
used terminology when discussing eye tracking. What the eyes are gazing at is re-
vealed by gaze points. You will get 60 distinct gaze points per second if your eye
tracker samples data at a rate of 60 Hz. A fixation is a period of time when the
eyes are locked onto an item and occurs when a cluster of gaze points are very close
together in time and/or location. Fixations are good indicators of visual attention,
and this area of study has been expanding steadily. Saccades are the common name
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for the eye movements that occur in between fixations. For instance, while we read,
our eyes don’t move easily. Every 7-9 letters, our eyes are locked (although this, of
course, depends on the font type and size). How many words we can read before
and after the word that is currently fixated is referred to as our ”visual span.” A
trained reader can cover more material with fewer fixations because they have a
longer visual attention span. While watching a faraway car pass by, though, our
eye motions are very di↵erent. Here, we pursue without jerking or saccadic motion.
However, if the item is moving too quickly or is too unpredictable, there may be
catch-up saccades [5].

Figure 3.8: Identification of fixations and saccades [66]

Saccade
A quick conjugate eye movement that quickly moves the center of the gaze (line
of sight) from one area of the visual field to another is typically employed to turn
one’s head in the direction of a particular item. It exhibits stereotypical amplitude,
duration, and peak velocity correlations. Only saccades are easily performed at
will (as when scanning a visual), but they are also deeply entwined with reflexive
and involuntary activities. A reflexive saccade toward the position of the stimulus
is elicited by suddenly occurring visual, as well as perceptual and sensory, stimuli
(visual grab reflex), and the eyes are also involved in an ongoing sequence of mi-
crosaccades during seemingly undisturbed fixation [91].
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Figure 3.9: Heat map example of palindrome exercise

Heatmaps
Heatmaps are graphic representations of how gaze points are generally distributed.
They are often shown as a colored overlay over the image or stimulus that is being
delivered. The shades of red, yellow, and green depict, from most to least, the num-
ber of gaze points that were focused on various areas of the image. A simple way
to rapidly see which elements are more popular than others is by using a heatmap.
Heatmaps allow comparisons between individual responses and groups of partici-
pants, which can be useful for figuring out how various populations may perceive a
stimulus di↵erently [5].

Areas of Interest (AOI)
An area of interest, also known as an AOI, is a tool used to pick out specific areas of
a shown stimulus and extract metrics for those areas. It does not constitute a metric
in and of itself, but it does define the space on which other metrics are based. You
could, for instance, create di↵erent AOIs around the torso and the face of a person
in a picture. You will then be able to see metrics for each region separately, such as
how long it took participants to gaze at a region after the stimulus appeared, how
long respondents stayed in a region, how many fixations were recorded, and how
many respondents glanced away and back. These metrics are useful for comparing
the e↵ectiveness of two or more components of a single video, image, website, or
software interface [5].

Time to First Fixation
The Time to First Fixation (TTFF) measures how long it takes a respondent (or all
respondents collectively) to fixate on a particular AOI after the stimulus has begun.
TTFF can represent both top-down attention-driven searches as well as bottom-up
stimulus-driven searches (such as a dazzling brand label) (e.g. when respondents ac-
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Figure 3.10: Average Heat map of each exercise of trained group
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Figure 3.11: Average Heat map of each exercise of untrained group
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tively decide to focus on certain elements or aspects of a website or picture). TTFF
is a simple but extremely useful eye-tracking metric that can reveal how particular
elements of a visual environment are prioritized [5].

Time spent (Dwell Time)
The duration of time respondents spend gazing at a certain AOI is measured as time
spent or dwell time. In some circumstances, an increase in the amount of time spent
on a particular area of a picture may indicate motivation and top-down attention
when participants avoid looking to potentially equally fascinating stimuli in the vi-
sual periphery. Shorter duration times can suggest that other regions on the screen
or in the environment might be more fascinating, whereas longer duration times can
suggest a high level of attention. However, eye tracking alone cannot draw inferences
about the emotional response to the visual stimulus (other measures, such as facial
expression analysis or EEG can help fill in the gaps) [5].

Revisits
The number of revisits tells us how frequently a participant returned to a specific
location that was identified by an AOI. This enables the researcher to investigate
which sections consistently drew the participant (for better or worse) and which ones
they saw but quickly abandoned. The person could be drawn to a certain aspect
of an image because it is interesting, di�cult to understand, or even frustrating.
Eye tracking can give you information about what needs more investigation, even
though it cannot tell you how someone felt while looking at something [5].

Scan Path

Scan Paths are based on the timing and location of participant looks, as well as
spatial and temporal information. This makes it possible to build up a picture of
what a participant prioritizes when they observe a visual scene. Due to the central
fixation bias, this will frequently start in the middle of the image, but the subsequent
viewed elements will be an accurate representation of what the participants are most
motivated to look at. Since the order of attention reflects both a person’s interest
and the most important aspects of the display or surroundings, it is frequently em-
ployed as a marker in eye tracking studies (i.e., elements that stand out in terms
of brightness, hue, saturation, etc.). The last fixation is more likely to predict a
choice, but there is a caveat: this fixation frequently occurs when experimenters are
aware of the top-to-bottom and left-to-right reading biases. Most languages have a
top-left-to-bottom-right reading order. First fixations are, therefore not particularly
indicative of behavior because items in the visual fields are frequently randomized
throughout repeated trials (due to this manipulation). In the actual world, it ap-
pears that smart marketers and designers will frequently be aware of these visual
biases, allowing them to possibly influence situations so that first fixation count [5].

First Fixation Duration
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Figure 3.12: Scan Path Example [51]

Our eyes travel around a visual scene as we investigate it before fixating on a par-
ticular area of the image. Data on the length of time that the initial fixation lasted
is provided by the first fixation duration. When combined with TTFF, this can
be very helpful in determining how much a certain feature of the scene initially
caught the audience’s attention. The location is probably particularly eye-catching
if a participant has a low TTFF and long first fixation duration. This information,
collected from an AOI, is especially helpful since it shows how long the first fixation
lasted in a particular location in comparison to other regions. This can be helpful
in figuring out what an AOI’s initial impressions are [5].

Average Fixation Duration
The average fixation duration, which can be calculated for both individuals and
groups, provides information on how long the average fixation lasted. In either
situation, this can be useful as a baseline measurement, but it’s also intriguing to
consider across stimuli. If one image results in a much longer average fixation du-
ration than another, it can be worthwhile to investigate the causes. Additionally,
comparisons between AOIs enable you to identify the places that were actually given
greater attention than others. It’s likely that you’ll want the average fixation du-
ration to be longer in the parts that showcase the message than in other areas if
you’re trying to communicate a message [5].

Blink
The majority of the time, blinking is an instinctive closing and opening of the eyelids.
Raw data points lack the x, y coordinates information because the eyelid covers the
pupil and cornea during each blink, blocking them from the illuminator. Fixation
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filters can be applied during the analysis to eliminate these points and accurately
extrapolate the data into fixations. It is also possible to extract information on blinks
from the raw data gathered by the eye tracker, provided that the head motions are
within the eye tracker requirements, i.e., that the missing data points do not result
from moving the head away from the eye tracking box [8].

Figure 3.13: When the blink is detected the respective pupil dilation value is set
close to zero [71]
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4.1 Objective

In this paper, our objective of work is to present some insights into whether students
are able to comprehend shortcut code. To accomplish our task, we examined how
the shortcuts a↵ected students’ behavior and visual attention. Further, to gain more
insights, we included trained a group of students and then categorized them into
two separate groups.
To add clarification to our objective, we address the research questions mentioned
in the next section.

Research Questions
While comprehending the source code:

1. Do program shortcuts a↵ect students’ response time and correctness?

2. Do program shortcuts a↵ect students’ visual attention?

Relevance
The motivation for us is to find out whether there is any significant di↵erence be-
tween understanding special syntax or shortcuts used in any code amongst di↵erent
experienced groups. It also provides us insights into their knowledge of the pro-
gramming language and problem-solving skills. On the other hand, if the shortcuts
are taught to a group of students, can they comprehend the code and how well they
could perform using those shortcuts in di↵erent scenarios to achieve di↵erent results?

Method
Each participant grasped the fundamentals of Python. Each participant will see the
snippets in order, and behavioral and visual information was captured that will be
crucial to the research and findings. 11 out of the total 21 participants took the
pretest to become familiar with the shortcuts. During the experiment, we used a
Tobii Pro Fusion eye tracking equipment to monitor the user’s eye movement. Stu-
dents were asked to select the correct response from a list of four possibilities after
each exercise in the study, which was conducted using PyschoPy. At the conclu-
sion of each test, behavioral and correctness data were generated which was used in
analysis and findings.

Implications
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The basic objective is to determine whether there are any appreciable di↵erences
in how di↵erent experienced groups comprehend shortcuts (special syntax) used in
any code. It also gives us information about their programming knowledge and
problem-solving abilities. On the other side, if a group of students are taught the
shortcuts, do they understand the code and how e↵ectively they could use those
shortcuts in various contexts to get various results.

4.2 Experiment Procedures

The experiment included the data listed in table 4.1. Each participant knew the
fundamentals of Python. Every participant saw the snippets in order, and behavioral
and visual data were collected as per table 4.2, which was crucial to the analysis
and outcomes. There were 21 individuals in all, and 11 of them participated in the
pretest, learning about the shortcuts. In the study, we used a Tobii Pro Fusion
eye tracking device to track the eyeball movement of the user. For the students
to participate, PsychoPy gives them an interface to view the source code. The
source code displayed using PsychoPy helped to record their eyeball movement. In
the beginning, students are shown code snippets with a source code; on the next
page, inputs are added to the source code. Students are then requested to select
a correct answer from the four available options. Response time, correctness, post-
talk-aloud, experience, and visual attention are analyzed as the dependent variable.
Response time defines the amount of time taken by the participant when they start
viewing a snippet until the time when they submit the answers. At the same time,
correctness refers to answers submitted by the participant after the execution of the
print statement of the source code. (e.g., check palindrome in the above figure).
The post-talk-aloud session was conducted, where the audio between the researcher
and participants was recorded. The participants were asked to share their responses
regarding the di�culty of the snippets. The questions were based on the heatmap
generated by the visual data for every snippet and if they could identify the shortcut
used in the code.

4.3 Software and Hardware

4.3.1 Psycho Py

Version: 1.5
PsychoPy (Open-source software) is largely used in experiments in neuroscience and
psychology. It was initially created as a Python library, then as a graphical appli-
cation, and it now also supports JavaScript outputs to run studies on the web and
on mobile devices. In contrast to other packages, it o↵ers a user interface, allowing
them to create experiments using graphical interfaces or Python scripts or even by
combining them both. It achieves platform neutrality by leveraging OpenGL for
graphics calls and the wxPython widget library for the application. Additionally, it
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Figure 4.1: Experiment Design Visualization

also has the ability to produce and transmit audio impulses. The program PsychoPy
is excellent for designing experiments. It blends Python programming’s elegance and
power with a graphical user experience. It has clearly encouraged greater integra-
tion of psychology with neuroscience because it has established itself as the pre-
ferred open-source language for multidisciplinary initiatives in neuroscience. Since
it is open source, it is also a powerful alternative for MATLAB to carry out neu-
roscience and psychology experiments. The PsychoPy community keeps assisting
many novice researchers with experiment programming. It can still be expanded
indefinitely to accomplish almost any scientific objective. The experiment involved
students’ participation by using PsychoPy. The results of the experiment produced
were very accurate and valuable.

4.3.2 Tobi Pro Fusion

With the inclusion of Eye tracking in the experiment, it encouraged us to explore
further in-depth various questions, which led us to discover new ways to approach
scientific inquiries. Besides adding value and developing observation metrics, this
motivated us to alter these methods of collecting data from the participants. The
easy-to-use, compactness of the device makes it an ideal entry point to begin their
research or wish to take the research to the lab environment. Tobii pro Fusion,
embedded with two cameras, one for stereoscopic eye tracking and another for in-
tegrated for processing for dark and bright pupil mode. The information acquired
from the device o↵ers us more details about the participants’ visual data to assist in
observing their behavior and determine the ways to make the experiments better in
the future. It also provides the flexibility to modify your data according to the re-
quirements, o↵ering a sampling frequency of up to 250Hz. Detailed information with
sampling rates up to 250 Hz there is more tolerance observed for head movement.
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Figure 4.2: Initial dialog of Pyscho Py Study

Timing consistency is ensured because there is no need for an external processing
unit because the data is processed independently.

4.3.3 Setup and Configuration

After the consent of the participant the configuration was set up. Firstly, the cal-
ibration of the Tobii pro fusion eye tracking device with the participant was set.
After calibration, the PyschoPy study was executed with the initial prompt of the
dialog as per figure 4.2 where the information about the user number and session
was filled and the ”use eyetracking” checkbox was enabled. Later, the instruction
and rules were followed. The instruction stated there will be some basic python code
fragment few of them are formal logics and lesser mathematical function. Some code
structure and function names can be bit unusual, but they do not need to bother
about that and solve the tasks as best as they can. Their task was to comprehend
the code snippet’s which will be present to them. After that they have to choose the
right option for the final print statement from a possible output displayed to them.
Spacebar can be used to go to the next page of the study.

4.4 Materials (Data)

Based on the discussion in section 3.2, nine code snippets were chosen. Shortcut
codes, such as logical or syntactic, are used in the code snippets, which are listed in
Table 4.1 and illustrated in Image 4.3. The study featured 55.6% logical shortcut
codes and 44.4% of syntactic shortcut codes. The snippets were chosen to examine
and gauge how participants engaged and looked at the shortcut code fragment and
how long it took them to fully understand it. The dimension of all the code snippets
images were 1080x1920. In the post-study, the participants were asked to give us
an idea of the level of complexity of each piece of code. We graded the di�culty
of the code snippets from easy to medium after observation. The majority of the
participants had no trouble recognizing the shortcuts. We proved that individuals
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Figure 4.3: Syntax vs Logical shortcuts used in the study where syntax shortcuts
are the ones which are checked at compile time and logical shortcuts
are the combination of one or more semantic(s) logic which performs one
or multiple operations in one particular statement.

who took part in the pretest and had prior Python competence were able to use
that experience to finish the experiment study.
The experimental investigation used two di↵erent versions of the code samples.

Table 4.1: Code Snippets list with LOC and Cognitive Weights

Figures 4.4 and 4.5 show the di↵erence; 4.4 has an actual code fragment, and 4.5
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retains the same combined with an enlarged code fragment and a final print state-
ment that is then used to help the participant choose an answer from the available
options to assess their performance.

Figure 4.4: Example of the of Code snippets without input statement

Figure 4.5: Example of the of Code snippets without input statement

4.5 Independent Variables

In this study we have one independent variable as Code Snippets as they are
constant attribute all over the study for every participant. A code snippet is a
brief section of source code or a code fragment. We used snippets of the Python
programming language that were comparable for both groups and had shortcut
syntax to complete a certain task. The code samples are produced using the online
tool Carbon, which enables us to produce source code pictures that resemble code
editor panels. Shortcut statements are based on special syntax or logical operations
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where syntax shortcuts are the ones which are checked at compile time and logical
shortcuts are the combination of one or more semantic(s) logic which performs one
or multiple operations in one particular statement. In addition to categorizing the
shortcuts themselves, we incorporate them into brief pieces of code that carry out
particular tasks. This can be used by functions, subroutines, procedures, library
functions, or algorithms. The example shown below uses both logical and syntactic
shortcuts. For more details 4.4

4.6 Dependent Variables

Data received at the end of the study contains information regarding eye tracking
(supplied by Tobii Pro Fusion), response time, and correctness since PsychoPy is
internally connected to Tobii Pro Fusion. The dependent variable in this study are
response time, correctness, post-talk-aloud, experience, and visual atten-
tion. Response time is the period of time when a participant begins to examine a
snippet till they submit their responses. Correctness likewise refers to responses pro-
vided by the participant following the execution of the source code’s print statement.
(See the illustration 3.9 above palindrome example) The post-talk-aloud session was
held, and the researcher and participants’ conversations were audio-taped. The par-
ticipants were asked to provide their opinions on how challenging the snippets were
and what the tricky part or shortcut involved in the code statements. The questions
were based on the heatmap created by the visual data for each code snippet and
whether or not the participant could recognize the shortcut employed. Next, the
visual attention data were retrieved, as described in the section 3.4

Table 4.2: Di↵erent Behavioral and Visual Data in our study

4.7 Participants

We invited students enrolled in undergraduate and graduated degrees at the Chem-
nitz University of Technology as well as a few experienced individuals with some
work experience. All participants had a basic knowledge of Python (i.e., expe-
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rienced, passed, at least an introductory programming class). Table 4.3 gives a
summary of the demographics and programming background of our participants.

Table 4.3: Demographic Table

4.8 Task

4.8.1 Pre-Test

Figure 4.6: Pretest: Explanation of the Shortcut statement
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Figure 4.7: Pretest: Example task of the Shortcut

We utilized free online surveys to provide users with a platform to conduct pretests.
The participants took a pretest to divide into groups and educate about the short-
cuts that would be used in the experimental investigation. Eight tasks in all, each
including an explanation, an example task, and an exercise, were o↵ered to the
participants, as illustrated in the image below, which shows an example of a task
that was part of the pretest. These eight tasks were adequate for participants to
understand and move on to the experimental study. Those who took part in the
pretest were grouped to the trained group. Figure 4.6 is an example that unveils
the pattern we followed to construct the structure to execute the task. The top
section provides the description and explanation for the shortcut. As shown in the
figure 4.6 shows an exercise for checking if two strings are Anagram together with
a description of what an anagram is and how we can achieve the results. In this
example, we used Counter from the collection, which returns an element list with
a number of occurrences which will assist in finding the frequency of alphabets in
both strings and further compare the frequency of every character to check whether
both of the strings are anagrams of each other. Figure 4.7 puts up a demonstration
of the use of the Counter object to check the anagrams with a code snippet and
question. Furthermore, there were three tasks that a participant had to solve with
the use of the similar Counter object as shown in figure 4.8. To proceed with the
new exercise, the participant must submit their answer.
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Figure 4.9: Initial flow of Pyscho Py Experiment

Figure 4.8: Pretest: Participants exercise of the Shortcut

After undergoing 24 tasks, the participant was required to answer a minimum of 18
approximate questions. A total of 11 participants who participated in the pretest
were placed in a trained group according to their performance.

4.8.2 Experiment Task

This section will go over the crucial steps, flow, and data extraction of the psycho-
logical investigation of the PyschoPy experiment in depth. Figure 4.9 displays the
experiment flow, which is followed by Figures 4.10 and 4.11.
The study was carried out at the Chemnitz University of Technology. Each par-
ticipant received a consent form for data privacy before the study began, and in-
formation was shared that the data were recorded anonymously. All of the pre-
configuration procedures were carried out before the experiment research even be-
gan to ensure that the data was accurately recorded. All the data was exported
in excel at the conclusion of the study, and a post-talk-aloud session was held to
document the experiences and challenges users had while taking the test. This gave
us further insight into the activity and how active participants engaged in the study.
The sections below go into great detail about all of this.

Code init
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We determine the flow of the code snippets by accessing the excel config file, which
contains information about the code snippets. To begin with, we initialized the eye
tracker, which was calibrated for the users to capture the values via eye moments
and the variables which will be essential during the process. study answers and
study cutting data were two files generated to accumulate the data in response to
the action performed by the participants. Time taken by the user to finish one task
and answers selected during the process was recorded in the excel files.
Later, the guidelines and norms were adhered to. According to the instructions,
there would be some fundamental Python code pieces, some of which would deal
with formal logic and simpler mathematical operations. Some function names and
code structures may be a little strange, but they don’t need to worry about that;
instead, they should focus on doing their best to complete the tasks. It was their
responsibility to understand the code samples that would be given to them. Then,
from a list of potential outputs that are then given to them, they must select the
best option for the final print statement. To continue to the study’s next page, press
the spacebar.

Eyetracking Setup
Checking whether the use eyetracking flag is enabled is the first step (Figure 4.2).
If so, we start recording the data obtained from the eye tracker that will eventually
be exported as an excel file. The recorded values contain gaze point validity, a set
of x and y gaze points together with a system time stamp, and pupil diameter (for
both the left and right eye).

With the exception of End Eyetracking, every phase in the flow diagram will loop
through nine exercises, and at the conclusion of each phase, the time stamp will be
recorded in the study cutting data

UpdateIndex
This stage is in charge of iterating through the exercises and gathering input from
the next exercise’s configured values.

Task and Input
This stage will locate the code snippet’s image file from the configuration files and
display it to the user. The following page of the task consists of the concrete code
fragment in the first image (4.4) and the same input coupled with an enlargement of
the code fragment with a final print statement (4.5) for which the participant must
choose an answer.

Choose Output
The user could choose one of four alternatives that were given to them based on
the configuration file’s four possible responses. They had to choose one, and it was
necessary to do so in order to move on to the next task. Following the selection of
the appropriate response from the given options, the responses were added to the
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Figure 4.10: Looping through the Code Snippets in Pyscho Py Experiment

Figure 4.11: End flow of Pyscho Py Experiment

study answers data.

End Eyetracking
The last phase describes the exportation of study cutting data with time values for
each exercise, study answers with user-selected answers for each exercise, and eye
tracking data with all the eye tracking data. Eye tracking will be released, and the
experiment will be concluded.

4.9 Post Talk Aloud Questions

To comprehend and justify participant decisions, post-experimental questionnaires
are becoming more and more crucial in experimental research. However, the choice
of how to administer these questionnaires is largely left to the discretion of the
individual researcher. It also depends upon analyzing the performance of all-left
or all-right item answers, count the number of times a participant chooses an al-
ternative that is rarely chosen by the typical participant, or examine the internal
consistency of answer pairs. The information we gather from administering the ques-
tionnaire supports our claim that our index does, in fact, evaluate answer quality.
Additionally, we identify those individuals whose responses ought to be disregarded
as invalid and, as a result, left out of future research by replicating a random-error
benchmark [16].
We outline the several careless answer measurement scales now in use, which will be
used to create our composite index. We next go into detail on how the questionnaire
was put together so that the sample’s answers could be evaluated for quality. After
creating the questionnaire, we run several experimental procedures. The order of the
participants in these procedures varies. The right question can be useful to compare
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more detailed results in our hypothesis. Refer to section 4.10 for more details and
procedures [16].

4.10 Post Processing

After completion of the study, which included eye-tracking data, answers, duration
of completion of the task, and talks aloud data, it was now required to extract
meaningful information.

4.10.1 Behavioural Data

As explained before, response time, correctness, and talk-aloud together constitute
behavioral data. The inclusion of the Talk-aloud session itself shows its impor-
tance because it helped to identify outliers and which participants had actively
participated in the study, excluding their contribution towards results and analysis.
Response time was evaluated after comparing the end time to the start time. Data
with stored answers received from the study were compared to the correct answers,
which were assigned with 1 for correct and 0 for incorrect for each task.

4.10.2 Visual Data

Eyetracking data was collected from the beginning till the end of the study for every
individual participant. The timestamp column in the data was compared with the
duration obtained after the end of the study. For every individual exercise, the
entire eye tracking data from the start time till the end time was accessed, which
was requisite to construct visual diagrams and feature data. The values contained
in the eye-tracking data are shown in table 5.7 and 5.6.
Extracted the eye-tracking values by following the steps.

• Exclude values where right and/or left eye(s) are non-valid.

• Split the set of (x,y) coordinate values x value and y values of both right and
left eye.

• Combine the x coordinate values of right and left eye and the same for y values.

• Zips both the x and y together in Gaze values.

Following the steps of preprocessing data, which included cleaning, removing out-
liers, and further preparing the data for results. Now the values can be passed in
order to generate heatmaps.
To further get more insights into the feature values, values of AOI coordinates were
created, which proved to be useful in obtaining eye-tracking feature values.

The formula used to calculate fixations and generate visual diagrams (heatmap,
fixation, scan path)
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D =
p

(max(Gx)�min(Gx))2 + (max(Gy)�min(Gy))2

D = Dispersion data point

Gx, Gy = Gaze point x and y coordinate

1. Constructed Heatmaps with a radius of 50 pixels and the sampling frequency
of 1000Hz, which were implemented using numba cuda to achieve fast perfor-
mance.

2. Produced a Fixation diagram of 25 pixels and a minimum duration of 200 mil-
liseconds using PyGaze. (Any duration greater than 200 milliseconds results
in data lose).

3. Produced Saccades diagram with a minimum length of saccades of 5 mil-
liseconds, maximum velocity threshold in pixels/second of 40, and maximum
acceleration threshold in pixels/(second)2 of 340 using PyGaze.

4. Through modifying of PyGaze fixation generation function, which helped in
the extraction of the fixation points and duration of fixations.

5. After receiving all the fixation points, fixation points were compared with
the AOI cooridnates, which assisted in obtaining ’FirstPassDuration’, ’Sec-
ondPassDuration’, ’noOfFixtionsInAOI’, ’TotalDurationFixationInAOI’, ’Re-
visits’, and ’TotalDurationInAOI’.

After the data has been retrieved, preprocessed, and after all subsequent stages have
been completed, it is possible to gain considerably deeper insights. The trained and
untrained groups were established as described earlier in the study, and the mean
value per snippet was determined while eliminating the outlier found in the talk
aloud data and correctness (5.2.1). Now that the final data collection has been
completed, it is noise-free without outliers, which is then prepared for analysis.
This might pave the way for unexpected discoveries and issues. Furthermore, when
we compare these groups, we can see various trends.
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5.1 Statistical tests

In addition to your study design, the features of your data will determine the ap-
propriate statistical test to perform. This is the outcome of the study questions
and hypotheses we are attempting to address. Data is at the center of statistics.
Data by itself is not captivating. We are interested in the interpretation of the data.
Statistical testing is a crucial component of statistics. If statistics is defined as the
interpretation of facts, then statistical testing can be thought of as the formal tech-
nique for examining our views about the world. In other words, we must rely on
hypothesis testing if we want to make assertions about the distribution of data or
whether one set of results di↵ers from a set of results [36].

5.1.1 T-test

The average values of two data sets are compared using a t-test to ascertain whether
they represent the same population. A sample from the trained group in the in-
stances and a sample from the untrained group are unlikely to have the same mean
and standard deviation. Similar to how samples from the drug-prescribed group and
those from the control group that received a placebo should have slightly di↵erent
means and standard deviations [36]. The problem statement is established mathe-
matically by using a sample from each of the two sets in the t-test. It presupposes
that the two means are equal, which is the null hypothesis. Values are computed and
compared to the standard values using the formulas. Accordingly, the presumptive
null hypothesis is either accepted or rejected. If the null hypothesis can be ruled
out, it means that the data readings are significant and almost certainly not random.
One of several tests used for this purpose is the t-test. To evaluate more variables
and larger sample sizes, statisticians use tests than the t-test. A z-test is employed
by statisticians for high sample sizes [36].

t = m�µ
s/

p
n

t = Student
0
s t� test

m = mean

µ = theoretical value

s = standard deviation

n = variable set size

By comparing two mutually incompatible statements about a population, we can
use hypothesis testing to try to understand or draw inferences about the population.
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The goal is to identify which of the two statements the sample data most strongly
supports [36].

5.1.2 Outlier Detection Techniques (ODT)

A dataset’s abnormal observations/samples that do not fit its typical/normal sta-
tistical distribution is found using an outlier detection technique (ODT). Simple
approaches for outlier detection examine each distinct attribute of the dataset using
statistical tools like box-plot and Z-score. A box plot is a standardized method
of utilizing boxes and whiskers to illustrate the distributions of samples matching
di↵erent attributes. Any data point or sample outside these bounds is regarded as
an outlier. The boxes reflect the interquartile range of the data, and the whiskers
represent a multiple of the first and third quartiles of the variable [81]. Outliers are
often defined as Z-score values more or less than ±n� correspondingly.

Z � score = xi�x̄
� . . . (1)

Z-score can be explained as equation (1), where xi is the value of the feature x for the
ith sample, � and x̄ are the feature x’s standard deviation and mean, respectively,
of the distribution [81].

5.1.3 Correlation factor

To gauge how closely two variables are related to one another, correlation coe�-
cients are used. The most common correlation coe�cient is Pearson’s, though there
are other varieties as well. The correlation coe�cient known as Pearson’s correla-
tion, sometimes known as Pearson’s R, is frequently employed in linear regression.
The degree of correlation between two pieces of data indicates how closely they are
related. Pearson Correlation is the most often used correlational statistics metric.
The Pearson Product Moment Correlation is its full name (PPMC) [32]. The PPMC
is unable to distinguish between dependent and independent factors. A high cor-
relation might be discovered, for instance, if you were looking for a link between a
high-calorie diet and diabetes. With the variables reversed, you might, nevertheless,
still achieve the same outcome. Alternatively, you may assert that a high-calorie
diet results from diabetes. It’s clear that this is absurd. The data you are plugging
in must therefore be understood by you as a researcher. The PPMC just tells you
whether there is a link; it does not provide any information regarding the slope of
the line [32].

r = n(
P

xy)�(
P

x)(
P

y)p
[n

P
x2�(

P
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P
y2�(

P
y)2]]

. . . (2)

r = correlation coefficient

xi = values of the x� variable in a sample

x̄ = mean of the values of the x� variable
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Figure 5.1: Post Talk Aloud performance evaluation

yi = values of the y � variable in a sample

ȳ = mean of the values of the y � variable

Equation (2) explains Pearson’s Correlation. A value between -1 and +1 is returned
by Pearson’s Correlation Coe�cient, a linear correlation coe�cient. A high negative
correlation is indicated by a -1, and a strong positive correlation is shown by a
+1. A 0 denotes the absence of a correlation (this is also called zero correlation).
The measure, as covariance itself, can only account for linear correlations between
variables and ignores numerous other kinds of connections or correlations. As a
straightforward illustration, one would anticipate a sample of high school student’s
ages and heights to have a Pearson correlation value that is significantly higher than
0, but less than 1. (as 1 would represent a perfect correlation) [32].

5.2 RQ1: Behavioral Data

5.2.1 Outlier Detection

The mean score for talk aloud and correctness of every participant is shown in table
5.1. Figure 5.1 provides an illustration of how post-talk-aloud scores are evaluated.
According to their performances, they were rewarded for their e↵orts with marks
where one was the highest and five was the lowest, and the participants that didn’t
actively participate in the exercise were considered outliers. After evaluation, three
participants’ data were pulled out and categorized as outliers and cannot be included
in further analysis. Figure 5.2 shows the normal distribution of the post-talk aloud
score for the participants calculated through Z-score where,

Mean (µ) = 1.84

Standard deviation (�) = 0.58

0.99 < (µ) < 2.69

Considering all the values between 0.99 and 2.69, which lie within a standard devia-
tion of ±1.3 and remain to be considered as outliers. Values of user9, user10, user20,
and user21 were recorded far away from the mean. The position of user9 is at the
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Table 5.1: Mean score for Talk aloud and Correctness for every participant in trained
and untrained group

extreme right of the normal distribution curve, and user10 and user21 are located at
the left. Due to the presence of a small margin in data (75%), the outliers detected
from talk aloud data were from user9, user10, and user21, holding the values [1, 3.5,
3.2] respectively.

As previously mentioned in the above section regarding the correctness, which re-
flected the mean data addressing the snippets, but now in this section, we are cal-
culating the mean correctness percentage value of individual participants to identify
outliers. To have an estimate of the correctness value, Z-score is calculated for in-
dividual participants, and plot the normal distribution curve as in Figure 5.2 shows
the normal distribution of the score of the correctness percentage values. where,
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Figure 5.2: Gaussian Graph for Outlier detection from Post talk aloud data

Mean (µ) = 5.94

Standard deviation (�) = 2.13

2.13 < (µ) < 8.91

In this passage, considering all the values between 2.13 and 8.91, which lie within a
standard deviation of ±1.7 and remain to be considered outliers. All the values of
user9, user10, user20, and user21 are significantly away from the mean. User9 is lo-
cated at the extreme right of the normal distribution curve, whereas users 10 and 21
are located at the left. Considering 80% of data and the mean normal distribution
curve, the outlier detected from the correctness response are user9, user10, user20,
and user21 with values [9, 2, 9, 2], respectively.

To maintain the data stability, User9, User10, and User21 were detected as outliers
both in Correctness and Talk aloud data and were required to eliminate the data
from the research and analysis part as to contribute and obtain significant statistical
tests to evaluate the hypothesis.

5.2.2 Descriptive Statistics

The behavioral data di↵ers in both group which can be observed in table 5.4 and
visualized in figure 5.4 and 5.5. After removing the outliers, there were a total of
9 members in the trained group and seven members in the untrained group that
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Figure 5.3: Gaussian Graph for Outlier detection from Correctness data

participated in the analysis process. Here in this section, we discuss the RQ1 for
behavioral data in two parts, and response time follows the correctness. Through
observation, it can be said that the response time ratio is higher in the untrained
group because the trained group was initially introduced to the shortcuts prior to
the experimental study, which helped them to comprehend the code faster than the
untrained group.
All response time ratios were approximately bearing the same magnitude. Inter-
estingly, data manifested reveal discernible variations in response times amongst
algorithms. For example, comprehension time taken for tasks ”Basic calculator,”
”Anagram,”,and ”Vowels and Consonants” shows significant di↵erences where the
time taken was less by 52.6%, 45.6% and 47.1% by the untrained group. Other tasks
such as ”Palindrome,” ”Alphabet Frequency,” and ”Random Card” also exposed a
similar response, where the trained group took comparatively ˜25% less time than
the untrained group.
Figure 5.5 shows the correctness data in percentage for each exercise, as one can
easily observe that there was an enormous di↵erence in some of the tasks such as
the ”Basic calculator” where 33.33% from the trained group and 85.71% from the
untrained group provided the correct answers. In the task ”Max-Min from a Ma-
trix,” 55.55% from the trained and 100% from the untrained group submitted correct
answers, and in the task ”Vowels and Consonants,” 33.33% from the trained and
71.42% from the untrained group submitted accurate answers. On the other hand,
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Figure 5.4: Response Time Comparison of trained and untrained group for each
exercise

Figure 5.5: Correctness Comparison of trained and untrained group for each exercise
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the trained group submitted correct answers to the task ”Anagram,” ”Palindrome,”
”Alphabet Frequency,” and ”Get Even Elements.” In the remaining tasks, there
were some observable di↵erences that can be noticed in relation to the responses
given by both groups. But to summarize our observation, it can be said that the
untrained group performed well as the trained group.

5.2.3 Inferential Statistics

To evaluate whether there is a significant di↵erence in the response time values
between both groups, we performed a t-test.

Table 5.2: Response Time Values of trained and untrained group for each exercise

Table 5.3: Response Time Statistical Values of trained and untrained group

The values for the hypothesis considered are:
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H0 = There is no significant di↵erence in ”Response Time” between both
groups.
H1 = There is significant di↵erence in ”Response Time” between both groups.

Statistically, we found there is a significant di↵erence in the response time of trained
and untrained groups with shortcut comprehension. The statistical data can be
observed in table 5.3 where the p-value is 0.05, the sample size of the trained group
is nine, and the untrained group is 7. The mean value of trained group is µ = 70.67
and the standard deviation as � = 22.44 and whereas for the untrained group is
µ = 114.23 and the standard deviation as � = 42.75 After executing the t-test
we obtained the value t = 0.274 which helped us in reaching the conclusion that
Hypothesis H1 is true.
To evaluate whether there is a significant di↵erence in the correctness ratio, for this,
we perform the same t-test.

Table 5.4: Correctness Values in [%] of trained and untrained group for each exercise

The values for the hypothesis considered are:

H2 = There is no significant di↵erence in ”Correctness” between both groups.
H3 = There is significant di↵erence in ”Correctness” between both groups.

We found no statistically significant di↵erence in the correctness of trained and
untrained groups with shortcut comprehension. The statistical data can be seen
in table 5.5 where the p-value is 0.05, the sample size of the trained group with 9
participants, and the untrained group with 7. The mean value of trained group is
µ = 5.78 and the standard deviation as � = 2.25 and whereas for the untrained
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Table 5.5: Correctness Statistical Values of trained and untrained group

group is µ = 5.33 and the standard deviation as � = 1.15 After executing the t-test,
we obtained the value t = 0.0213, which helped us in reaching the conclusion that
Hypothesis H2 is true.

5.2.4 Conclusion

After excluding the outliers (User9, User10, and User21) data from the data set we
analysed the Descriptive Statistics and Inferential Statistics on the Behavioral Data.
Observing the descriptive data we can claim that the trained group had been taught
the shortcuts before the experimental study, they were able to comprehend the code
more quickly than the untrained group, which is why the response time ratio was
higher in the trained group. In order to sum up our findings for the Correctness data,
it can be claimed that the both the groups performed same. The Hypothesis clearly
provided enough evidence to reach our conclusion. After the execution of statistical
tests respectively for response time and correctness, the statistical results obtained
provided an observation that there was a significant di↵erence in the Response Time
and no significant di↵erence in the Correctness data.

Answers to RQ1: Overall, we found no indication in the behavioral data that
shortcuts a↵ect students’ performance in program comprehension. We found
significant di↵erence in the response time but on other hand the performance
compared between both groups was equal implied by correctness values.

5.3 RQ2: Visual Data

5.3.1 Pre Processing and Preparation

Correlation Analysis
A correlation study can show important connections between several measures or
sets of metrics. Even though the measurements originate from many business de-
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partments, information about those links might o↵er fresh perspectives and highlight
interdependencies. Understanding which metrics have strong relationships, that is,
when one metric behaves in a certain way, one or more additional metrics can be
expected to behave similarly or in the opposite way; this is helpful when we track
eye-tracking metrics in many di↵erent ways. The degree of change in one variable
as a result of the other’s change is determined via correlation analysis. We can
conclude that the other variable or metric is also being impacted in a similar way if
there is evidence of a high connection between the two and one of them is acting in
a certain way.
A high correlation indicates a significant link between the two measurements, whereas
a low correlation indicates a poor association between the two metrics. A positive
correlation indicates that both measurements grow in tandem, whereas a negative
correlation indicates that as one metric grows, the other one shrinks. This makes it
easier to combine comparable values together and eliminates the need for separate
data processing.
The figure 5.6 illustrates the correlation matrix that displays how closely two vari-
ables are correlated. It provides the correlation between each set of potential value
pairings in matrix form. To summarize a vast eye tracking metric, find the patterns,
and base a decision on them, we can utilize a correlation matrix. Additionally, we
can display our results and determine which variable is more connected with which
variable. The correlation coe�cient is contained in each cell of a matrix. The coe�-
cient values range from ±1. Strong positive correlations are defined as values more
than 0.9, and strong negative correlations as values lower than -0.9. Other than
those values, there is no correlation in the relation of eye tracking metrics. The
following can be observed by reading the figure 5.6 with a circle in their correlation
coe�cient:

1. The relation is stronger between ”NoOfFixationsInAOI” and ”Revisits” with
a correlation coe�cient of 0.94.

2. The relation is stronger between ”NoOfFixationsInAOI” and ”TotalDurationI-
nAOI” with a correlation coe�cient of 0.93.

3. The relation is stronger between ”FirstPassDuration” and ”TotalDurationOf-
FixationInAOI” with a correlation coe�cient of 0.9.

For instance, if we examine the value in table 5.6 and the bar graphs 5.7, 5.8, we
can see that when ”NoOfFixationsInAOI” has a positive impact, ”Revisits” likewise
increases in the equal magnitude and in proportion to that value for lower values.
We use ”FirstPassDuration,” ”SecondPassDuration,” and ”NoOfFixationsInAOI”
for our subsequent statistical analysis after correlated features have been removed.

5.3.2 Descriptive Statistics

Through Figure 5.9 the ”FirstPassDuration” data can be visualized for each exercise
to provide an overview of the data, followed by all other features discussed in the
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Figure 5.6: Eye tracking features values correlation comparison
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Figure 5.7: No Of Fixations in AOI Comparison of trained and untrained group for
each exercise

Figure 5.8: Revisits in AOI Comparison of trained and untrained group for each
exercise
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Table 5.6: Number of Fixations and Revisits Values of trained and untrained group
for each exercise

above section. After observing, all the exercises possess a huge di↵erence in time
spent in the first pass, where the untrained group takes five times more time than
the trained group in the shortcut AOI. The figure 5.10 shows the data of ”Second-
PassDuration,” where it is noticeable that in some of the exercises, it was similar to
”FirstPassDuration” except, if we observed ”SecondPassDuration” the tasks such as
the Max min from a matrix, Get Even elements, random cards, and vowels and con-
sonants the time taken in the second pass was same or more than for trained group
and in the rest of the task the time taken was the same as ”FirstPassDuration”
approx to 5 times more.
In figure 5.7 we can see the comparison of ”noOfFixtionsInAOI” for both groups. It
shows that less number of fixation points in the shortcut AOIs are for the trained
group than in the untrained group except for the data for the task random card
where the ”noOfFixtionsInAOI” are higher than those of the untrained group. As
the ”noOfFixtionsInAOI” and Revisits are equally correlated to each other, we can
also state that the number of revisits in shortcut AOIs was lower in the trained
group.

5.3.3 Inferential Statistics

To evaluate whether there is a significant di↵erence in the ”FirstPassDuration,” to
find out t-test was carried out. The values for the hypothesis considered are:
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Figure 5.9: First Pass Duration in AOIs Comparison of trained and untrained group
for each exercise

Figure 5.10: Second Pass Duration in AOIs Comparison of trained and untrained
group for each exercise
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Table 5.7: Eye Tracking features Values of trained and untrained group for each
exercise

Table 5.8: First Pass Duration Statistical Values of trained and untrained

H4 = There is no significant di↵erence in ”FirstPassDuration” between both
groups.
H5 = There is a significant di↵erence in ”FirstPassDuration” between both
groups.

We found no statistically significant di↵erence in the ”FirstPassDuration” of trained
and untrained groups with shortcut comprehension. The statistical data can be ob-
served in table 5.8 where the p-value is 0.05, the sample size of the trained group is
nine, and the untrained group is 7. The mean value of trained group is µ = 0.275
and the standard deviation as � = 0.331 and whereas for the untrained group is
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µ = 0.532 and the standard deviation as � = 0.664 After executing the t-test we
obtained the value t = 0.345 which helped us in reaching the conclusion that Hy-
pothesis H5 is true.

Table 5.9: Second Pass Duration Statistical Values of trained and untrained

To evaluate whether there is a significant di↵erence in the ”SecondPassDuration,”
to find out, we performed a t-test. The values for the hypothesis are considered
here:

H6 = There is no significant di↵erence in ”SecondPassDuration” between both
groups.
H7 = There is a significant di↵erence in ”SecondPassDuration” between both
groups.

We found no statistically significant di↵erence in the ”SecondPassDuration” of
trained and untrained groups with shortcut comprehension. The statistical data
can be observed in table 5.9 where the p-value is 0.05, the sample size of the trained
group is nine, and the untrained group is 7. The mean value of trained group is
µ = 0.177 and the standard deviation as � = 0.092 and whereas for the untrained
group is µ = 0.24 and the standard deviation as � = 0.165 After executing the t-test
we obtained the value t = 0.36 which helped us in reaching the conclusion that
Hypothesis H7 is true.

To evaluate whether there is a significant di↵erence in the ”noOfFixtionsInAOI,” to
find out, we performed a t-test. The values for the hypothesis considered are:

H8 = There is no significant di↵erence in ”noOfFixtionsInAOI” between both
groups.
H9 = There is a significant di↵erence in ”noOfFixtionsInAOI” between both
groups.

We found no statistically significant di↵erence in the ”noOfFixtionsInAOI” of trained
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Table 5.10: Number of Fixtions In AOI Statistical Values of trained and untrained

and untrained groups with shortcut comprehension. The statistical data can be ob-
served in table 5.10 where the p-value is 0.05, the sample size of the trained group is
nine, and the untrained group is 7. The mean value of trained group is µ = 50.8 and
the standard deviation as � = 27.98 and whereas for the untrained group is µ = 85.82
and the standard deviation as � = 46.5. After executing the t-test we obtained the
value t = 0.115 which helped us in reaching the conclusion that Hypothesis H9 is
true.

5.3.4 Conclusion

After correlation analysis, we observed that the when ”NoOfFixationsInAOI” has
a positive impact, ”Revisits” likewise increases in the equal magnitude and in pro-
portion to that value for lower values. We exclude the ”Revisits” for statistical
tests and carry our the Descriptive Statistics and Inferential Statistics on the Vi-
sual Data. The ”FirstPassDuration” and ”SecondPassDuration” in the AOI for all
exercises vary enormously, with the untrained group taking five times longer than
the trained group. It demonstrates that the trained group had fewer fixation points
in the shortcut AOIs than the untrained group. The Hypothesis clearly provided
enough evidence to reach our conclusion. After the execution of statistical tests it
states that there is significant di↵erence in all the eye tracking metrics. The results
obtained provided a structure of observation that the training o↵ered to the students
prior to the test had a significant di↵erence in the Visual data in comprehending
the shortcuts. It is adequate to state that there is a significant di↵erence in visual
attention in both groups.

Answers to RQ2: Overall, we found indication in the visual data that short-
cuts a↵ect students’ performance in program comprehension. There was signif-
icant di↵erence in Visual data for all the eye tracking metrics.
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During the data analysis, we discovered a number of intriguing findings, which
we now go on to discuss. We explicitly distinguish between solving the research
questions and data exploration that is not covered by our research questions. If
we observe patterns in the behavioral data, we can conclude that the untrained
group performed well in answering the question than the trained group can be the
case because the function names gave them a clue what is the role of the function
itself while the trained group tried to comprehend the statements precisely and lost
their way through it. We can also see the di↵erence in response time in the trained
group was lower because of the introduction of shortcut statements prior to the test,
and the untrained group took more time because the focus point was more on the
shortcut code, which was the challenging part to grasp.
The basic approach and computations are the focus of the majority of the programs,
but we also discovered that participants’ visual attention is drawn to programs with
the introduction of the pretest. We examined and retrieved pertinent statistics from
the visual-attention data the Tobii Pro Fusion eye tracker had generated. Heatmaps,
fixation diagrams, and scan paths were constructed by taking all the relevant data
into account. To get assistance in Inferential Statistics and test the hypothesis, we
also extracted eye tracking feature values in the area of interest (AOIs).
AOIs are defined in accordance with their involvement in the code snippet, which
includes :

1. ’Declaration and/or usage of shortcut’ The coordinates of the code segment
where the actual shortcut code lies and is used for extracting feature values.

2. ’Statements that call the shortcut’ The code fragment that calls the shortcut
code or the function where the shortcut code has been used.

3. ’Return Result’ - The final print statement code for returning the result.

Figure 6.1,6.3 and 6.4, the diagram represents the heatmap, fixation diagrams, and
scan path with the AOIs. This adds an explanation to the degree to which the
participant gazed in AOIs. Di↵erences between the trained group and the untrained
group can be observed, where the heatmap and fixation points are spread across the
code snippet. In addition, with the focus shift between both groups in the scan path
diagram. We found the evident di↵erence between both groups, but our primary
concern was how does the participant perceive the shortcut code and other important
code fragments. Another di↵erence can be observed in the fixation diagram and scan
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Figure 6.1: Palindrome exercise with correct response

Figure 6.2: Palindrome exercise with incorrect response
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Figure 6.3: Fixation Points of Palindrome Exercise for correct response

Figure 6.4: Scan Path of Palindrome Exercise for correct response
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path by looking at the number of fixation points and their duration and the number
of times the participant revisited the AOIs in the flow of comprehension.
After observing the visual diagrams, the code fragment with the shortcut seen by

the untrained group gave a lot of weight to it.
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7 Threat to Validity

7.1 Internal Threat

Our study and the participant sample pose a number of risks to validity. First, the
gender distribution is angled, but it still closely mirrors the demography in com-
puter science at our institutes. Second, we have to wonder if the classification of
participants into groups was valid: Do our intermediate programmers have enough
programming experience? Based on a questionnaire, we asked participants a few
questions about their experiences to ensure a proper assignment.
Although controlled eye tracking studies must account for confounding variables to
the greatest extent possible, we deliberately focused on strong internal validity. We
chose a homogeneous sample of programmers with a range of programming expertise
(trained group), and our snippets are rather brief and written in just one program-
ming language. As a result, our findings are limited to identical situations and
cannot be easily extended to other situations, such as experienced programmers or
vast code bases. There must be a trade-o↵ between aiming for high internal validity
and high exterior validity.
It’s important to note that although our experiment focused on methods, software
systems actually contain a variety of techniques and higher-level components. Our
findings nevertheless have relevance in real-world situations: Code complexity mea-
sures might help predict cognitive e↵ort and that they might demand more time
than anticipated for intermediate programmers when we know that they work at
the method level. Future research will cover other complexity metrics that have
been developed above the technique level. Our research serves as a springboard for
specialized follow-up investigations into these measurements and related cognitive
processes.

7.2 External Threat

Our study demonstrates the typical dangers of using student enrollment and small
Python scripts. Only a very careful translation of our results to additional contextual
elements is possible. Reading behavior of longer snippets with more sophisticated
control flows may produce various outcomes. It’s important to note that although
our experiment focused on methods, software systems actually contain a variety of
techniques and higher-level components. Our findings nevertheless have relevance
in real-world situations: Code complexity measures might help predict cognitive
e↵ort and that they might demand more time than anticipated for intermediate

79



7 Threat to Validity

programmers when we know that they work at the method level. Future research
will cover other complexity metrics that have been developed above the technique
level. Our research serves as a springboard for specialized follow-up investigations
into these measurements and related cognitive processes.
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8 Conclusion and Future Work

The findings showed that participants took less time to understand the shortcuts
after receiving training before the test. Even though the correctness response was
were similar in both group the time taken to understand the code was significant less
by trained group. The trained group gazed through the key statements in the code
snippets and followed the execution flow. If we observe the number of revisit and
fixations in trained group it states that they understood the shortcut code statement
with less repetition of gaze activity. The focus point was more in area of interest
than in non important code statements. Training the student add much more value
in understand the code with shortcut statement(s).
If we observe the scan path with AOIs, we can observe that did the participant

seen the execution flow of the shortcut? Did they noticed the role of the shortcuts
played in the code? Did they gazed through the key elements in the code snippet?
Were the participant was confused by the non-important code fragment outside the
AOIs? Using the visual diagrams’ noted focus areas as a guide, we retrieved the
following patterns. Observing the scan path with AOIs provokes follow-up questions:

1. Did the participant see the execution flow of the shortcut?

2. Did they notice what the role of shortcuts is?

3. Did they gaze through the key elements in the code snippet?

4. Were the participant confused by the non-important code fragment outside
the AOIs?

If we look at the non-important code fragment with the same level of heat, we
can postulate from this that the participant was gazing through the whole code, or
it brings us to another question, whether the student was getting distracted because
the heatmap was spread all over the snippet.
Our results demonstrate that the introducing shortcuts approach has visible influ-
ence on how well students comprehend programs with shortcuts. We also emphasize
the need for future research. We were unable to measure cognitive load (e.g., with
pupil dilation), see how students processed bits of information, or use more com-
plex snippets because of the extremely constrained nature of our environment. The
students can be instructed to code their own program utilizing shortcuts. Instead
of using post talk aloud session a during talk aloud session will help in answers
question like how, when and why the students gazed through certain part of code.
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Analysis of existing software cognitive complexity measures. International Journal
of Secure Software Engineering, 8:51–71, October 2017.

[57] Greg L Nelson, Benjamin Xie, and Amy J Ko. Comprehension first: evaluating
a novel pedagogy and tutoring system for program tracing in cs1. In Proceedings
of the 2017 ACM conference on international computing education research, pages
2–11, 2017.

[58] Matthew Nicely and Keith Kraus. Unifying the cuda python ecosystem — nvidia
technical blog., April 2021. (Online, Accessed: 08.08.2022).

[59] Nils J Nilsson. Learning machines. 1965.

[60] Patrick Peachock, Nicholas Iovino, and Bonita Sharif. Investigating eye movements
in natural language and c++ source code-a replication experiment. In International
conference on augmented cognition, pages 206–218. Springer, 2017.

[61] Norman Peitek, Janet Siegmund, and Sven Apel. What drives the reading order
of programmers? an eye tracking study. In Proceedings of the 28th International
Conference on Program Comprehension, pages 342–353, 2020.

[62] Nancy Pennington. Comprehension strategies in programming. In Empirical Studies
of Programmers: Second Workshop, 1987, pages 100–113, 1987.

[63] Nancy Pennington. Stimulus structures and mental representations in expert com-
prehension of computer programs. (295-341), 1987.

[64] Roy M Pritchard. Stabilized images on the retina. Scientific American, 204(6):72–
79, 1961.

[65] Keith Rayner. The 35th sir frederick bartlett lecture: Eye movements and attention
in reading, scene perception, and visual search. Quarterly journal of experimental
psychology, 62(8):1457–1506, 2009.

[66] Christophe Rigaud, Nam Le, Jean-Christophe Burie, Jean-Marc Ogier, Shoya Ishi-
maru, Motoi Iwata, and Koichi Kise. Semi-automatic text and graphics extraction
of manga using eye tracking information. pages 120–125, April 2016.

[67] Robert S Rist. Schema creation in programming. Cognitive Science, 13(3):389–414,
1989.

86



BIBLIOGRAPHY

[68] Martin P Robillard, Wesley Coelho, and Gail C Murphy. How e↵ective developers
investigate source code: An exploratory study. IEEE Transactions on software
engineering, 30(12):889–903, 2004.

[69] David A Robinson. A method of measuring eye movemnent using a scieral search coil
in a magnetic field. IEEE Transactions on bio-medical electronics, 10(4):137–145,
1963.

[70] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. How do pro-
fessional developers comprehend software? In 2012 34th International Conference
on Software Engineering (ICSE), pages 255–265. IEEE, 2012.

[71] Anna Rogalska, Filip Rynkiewicz, Marcin Daszuta, Krzysztof Guzek, and Piotr
Napieralski. Blinking extraction in eye gaze system for stereoscopy movies. Open
Physics, 17:512–518, September 2019.

[72] Nanda NJ Rommelse, Stefan Van der Stigchel, and Joseph A Sergeant. A review on
eye movement studies in childhood and adolescent psychiatry. Brain and cognition,
68(3):391–414, 2008.

[73] DE Rumelhart. Schemata: The building blocks of cognition., chapter 2, 1980.
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